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1996-97 RF Research Focused on 
Possible Profile Control Techniques

◆ Attempt to control transport barriers directly
– Use direct ion Bernstein wave (IBW) heating 

(ala PBX-M)

◆ Current profile control
– Explore mode conversion CD in DT plasmas:

– Eliminate competition from 7Li ions (present in 
TFTR from machine conditioning techniques) 
which was believed to plague earlier 
experiments
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Principal  Results of these Experiments are:

◆ Successful IBW wave coupling was found 
to be sensitive to poloidal phasing.

◆ Elimination of 7Li ions resulted in efficient 
mode conversion heating in DT plasmas.

◆ Localized poloidal flows were observed 
with both direct IBW and mode conversion 
heating.



PPPLPPPL

Direct IBW Heating Experiments

◆ Past experiments on other devices have found 
heating and wave coupling to be difficult ∴

◆ Two Coupling Regimes Explored
– Electron plasma wave (EPW)

– Cold electrostatic ion cyclotron wave (CESICW)

◆ Two Antenna Phasings Explored
– Four straps phased (0,0,0,0) or (0,0,π,π)
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Electron Plasma Wave Launch

76 MHz
B0 = 3.4 T

Two IBW Launch Scenarios Attempted

◆ EPW launch consistent with 
localized ion heating on LFS (desired 
for CH mode), but very sensitive to 
edge density profile.

◆ CESICW launch is less sensitive to 
the edge density profile and has 
greater power flux at the edge.
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Coupling Improved with 0/0/π/π Phasing
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Loading Affected by Poloidal Phasing

Better Core Heating with Lower Loading - indicates edge modes
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Similiar Coupling with EPW and 
CESICW

• EPW launch
> 0/0/π/π
> 50.65 MHz
> B0=2.4 T

• CESICW launch
> 0/0/π/π
> 50.65 MHz
> B0=4.7 T
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Measured Edge Density Profile Consistent with 
Theory for Good Coupling

◆ Edge density modification consistent with 
Ponderomotive force.

◆ Independent of phasing

0 10 0

1 10 12

2 10 12

3 10 12

355.0 356.0 357.0 358.0 359.0 360.0 361.0 362.0

n
e
 (

cm
-3

)

R (cm)

Before RF

During 1 MW RF

A
n

te
n

n
a

102912

ORNL Reflectometer



PPPLPPPL

RF probes indicate comparable wave 
amplitude near and far from antenna

•Decay instabilities are observed sporadically
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With EPW launch, core reflectometer only 
observed wave on high field side

•Wave signal on 
high field side 
cannot be IBW, 
suggests surface 
wave.
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IBW Summary

◆ Antenna phasing is observed to have the 
strongest effect on IBW Heating and 
loading 

◆ Parasitic surface wave excitation is a strong 
candidate to explain the low efficiencies 
observed
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◆ D-He3 experiments demonstrated that Mode 
Conversion of the fast wave to a IBW can result 
in efficient localized heating and current drive 
on and off axis.

◆ Initial D-T mode conversion experiments did 
not behave as expected.

◆ 7Li ions present from machine conditioning 
were believed to be responsible for this 
behavior.

Mode Conversion Heating and Current Drive
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Mode converted IBW will damp on ions for 
Ti > 30 keV

Supershot discharge
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◆ Modeling with FELICE (M. Brambilla) for Ti = 30 keV + 
25% beam ions, Te = 8 keV, B0 = 5.1 T, ne (0) = 4.5 x 
1019 m-3
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D-T MC with hot ions affects the core 
strongly enough to modify neutron rate
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Lower Target Ion Temperature leads to 
Electron Heating
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r/a = 0.2

NBI = 18 MW

RF= 1 MW
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D-T mode conversion experiments show 
evidence for strong, localized ion heating
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Switchover to ion heating is predicted 
for sufficiently hot target plasmas
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Poloidal Flows are Observed for both 
Direct IBW and MC Heating

◆ Magnitude of observed flows are smaller 
than those believed to be necessary to 
suppress fluctuations:

dVpol/dr ~ Cs/R

◆ Direction of flows is in agreement with 
simple theory
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Sheared Poloidal Flow Develops During 
IBW Heating
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IBW ON

2

1

0

-1

-2

-3
3.0 3.5 4.0 4.5

TIME (s)

∆v
θ 

(k
m

/s
)

R = 295 cm

R = 302 cm

R = 306 cm

R = 309 cm R = 313 cm



PPPLPPPL

Absence of Sheared Flow in the Absence 
of IBW

R = 292 cm
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Sheared poloidal flow observed near 
IBW Absorption Layer
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∆Vθ for no IBW Discharge
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Summary

◆ Elimination of surface waves by poloidal 
phasing improves IBW heating efficiency

◆ Elimination of 7Li ions resulted in 
successful DT Mode Conversion Heating

◆ Poloidal flows were driven with both direct 
IBW and Mode Conversion heating
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Ion Resonances for 76 MHz
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Radial Electric field derived from Force 
Balance

Subtracting profile before RF shows Subtracting profile before RF shows 
EErr due to IBW due to IBW
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Change in Poloidal Velocity Observed 
during DT Mode Conversion Heating
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